Lấy mẫu ngẫu nhiên đơn giản là mẫu lấy mẫu cơ bản nhất và có thể là một thành phần của các phương pháp lấy mẫu chính xác và phức tạp hơn. Tiêu chí để lấy một mẫu ngẫu nhiên đơn giản, trái ngược với một mẫu ngẫu nhiên có hệ thống, là mỗi người được lựa chọn tham gia phải được lựa chọn mà không có bất kỳ sự thiên vị nào. Không có chỗ cho ngay cả một ngoại lệ duy nhất trong việc lấy mẫu.
Một định nghĩa được sử dụng phổ biến là tất cả những người tham gia cuộc khảo sát được chọn ra khỏi đội mũ. Cho dù dân số đã lấy mẫu ở mức bao nhiêu hoặc nhỏ thì mỗi thành viên trong quần thể đó đều có cơ hội như những người khác được chọn. Do đó, nếu một mẫu ngẫu nhiên đơn giản được lấy của 100 học sinh trong một trường trung học với dân số 1 000 thì mỗi học sinh nên có một trong 10 cơ hội được lựa chọn.
Với một mẫu ngẫu nhiên đơn giản, phải có chỗ cho lỗi thể hiện bởi một phương sai cộng và trừ. Ví dụ, nếu trong cùng một trường trung học mà một cuộc khảo sát đã được tiến hành để xác định có bao nhiêu sinh viên là người thuận tay trái, thì việc lấy mẫu ngẫu nhiên có thể xác định rằng tám trong số 100 mẫu là thuận tay trái. Kết luận có thể là 8% dân số học sinh của trường trung học thuận tay trái, trong khi trên thực tế, mức trung bình toàn cầu sẽ gần 10%.
Điều này cũng đúng với mọi vấn đề. Một cuộc khảo sát về tỷ lệ phần trăm dân số học sinh có mắt xanh, bị mất năng lực về thể chất, hoặc là một phần của cộng đồng gay hoặc lesbian sẽ dẫn đến một xác suất toán học cao dựa trên một cuộc điều tra ngẫu nhiên đơn giản, nhưng luôn luôn có cộng hoặc trừ biến thiên. Cách duy nhất để có tỷ lệ chính xác 100% là khảo sát tất cả 1 000 học sinh, trong khi có thể sẽ không thực tế.
Trên quy mô lớn hơn, chẳng hạn như cuộc điều tra bầu cử, lấy một cuộc bình chọn của tất cả các cử tri có thể trở thành thể chất không thể. Một mẫu ngẫu nhiên hệ thống hiệu quả hơn vì các mẫu ẩn trong một mẫu quần thể có thể được xác định có hiệu quả hơn.Với phương pháp này, đối tượng đầu tiên được khảo sát được chọn - nói học sinh thứ sáu có tên xuất hiện theo bảng chữ cái - theo sau là tiến trình toán học của mỗi học sinh thứ mười có tên xuất hiện sau đó. Không thành vấn đề nếu học sinh đầu tiên đó là người thuận tay trái hay thuận tay phải. Ông vẫn là một chủ đề điều tra đầu tiên hợp lệ kể từ khi ông được chọn ngẫu nhiên. Một nhà nghiên cứu có thể đã chọn sinh viên thứ năm hoặc thứ bảy dựa trên họ.
Nó cũng tương tự như phương pháp xổ số, vì tên đầu tiên không đến từ 10 hoặc 100 đầu tiên, nhưng được chọn một cách ngẫu nhiên từ toàn bộ 1.000 học sinh. Vào cuối của việc lựa chọn chữ cái, cuộc khảo sát trở lại chữ cái đầu tiên của bảng chữ cái, do đó sẽ tròn đầy đủ.
Theo một nghiên cứu mù, nhà nghiên cứu vẫn không biết ai là sinh viên được khảo sát, nhưng vì sự tiến triển dựa trên mỗi học sinh được lựa chọn dựa trên tên của mình, tên không còn được chọn từ một mũ.
Sự khác nhau giữa một mẫu ngẫu nhiên đơn giản và một mẫu ngẫu nhiên phân tầng là gì?
Tìm hiểu sự khác biệt giữa lấy mẫu ngẫu nhiên đơn giản và lấy mẫu phân tầng ngẫu nhiên, và tìm hiểu về những ưu điểm của từng phương pháp.
Người phối ngẫu của tôi là người thụ hưởng chính của IRA của tôi. Tôi cũng có một người thụ hưởng ngẫu nhiên. Người phối ngẫu của tôi có thể chuyển IRA tài sản của tôi cho IRA của chính mình không?
Một người phối ngẫu duy nhất được hưởng lợi từ IRA có thể luôn luôn coi IRA là của chính mình. Người thụ hưởng ngẫu nhiên trên IRA không bao giờ được xem xét trừ khi người thụ hưởng chính chấp nhận chủ sở hữu IRA, hoặc người thụ hưởng chính từ chối tài sản đó.
Các nhà nghiên cứu đảm bảo rằng một mẫu ngẫu nhiên đơn giản là đại diện chính xác cho một quần thể lớn hơn?
Tìm hiểu phương pháp mà các nhà nghiên cứu sử dụng để đảm bảo rằng một mẫu ngẫu nhiên đơn giản nhất có thể so sánh số lượng lớn người đang được nghiên cứu.